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Abstract 

The temperature dependence between 30 and 300 K 
of the intensities of 24 reflections of the column- 
composite structure Hg0.vv6(BEDT-TTF)SCN 
[Wang, Beno, Carlson, Thorup, Murray, Porter, 
Williams, Maly, Bu, Petricek, Cisarova, Coppens, 
Jung, Whangbo, Schirber & Overmyer (1991). Chem. 
Mater. 3, 508-513; BEDT-TTF = 3,4,3',4'-bis(ethy- 
lenedithio)-2,2',5,5'-tetrathiafulvalene] has been 
analyzed in terms of a model including phason tem- 
perature factors. The temperature dependence of the 
main and first-order satellite reflections is reasonably 
well reproduced in a refinement with 236 observa- 
tions and four variables. The results are interpreted 
in terms of a temperature independence of the static 
displacement amplitudes. The room-temperature 
r.m.s, phason fluctuations of the mercury sublattice 
are 50 (2) ° . This value implies that the mean mercury 
displacement amplitude will increase by - 6 0 %  on 
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lowering of the temperature to within the liquid- 
helium range. The thermal contraction on cooling is 
the same for the two sublattices. 

Introduction 

For a modulated crystal, the usual description of the 
effect of atomic thermal motion on the reflection 
intensities must be modified by the introduction of 
Debye-Waller factors that vary from unit cell to unit 
cell along the modulation-vector direction, as the 
translational symmetry in this direction no longer 
exists. The temperature-factor modulation can be 
described by a Fourier series, the form of which 
follows from superspace-group theory (Yamamoto, 
1982). 

In addition, the phase and amplitude of the modu- 
lation can fluctuate. Such modes are thermally 
excited at quite low temperatures. The temperature- 
factor theory of phasons and amplitudons was intro- 
duced by Overhauser (1971) and further developed 
by Axe (1980). Perez-Mato & Madariaga (1990) 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 



462 R E F L E C T I O N  INTENSITIES OF Hgo.776(BEDT-TTF)SCN 

established the relation between phase and amplitude 
fluctuations and the modulation of the atomic ther- 
mal parameters using the Landau theory of phase 
transitions. 

In composite crystals, the modulation is not 
caused by the condensation of a soft phonon but 
arises from the coexistence in one crystal of two 
sublattices with different periodicities in at least one 
direction (Janner & Janssen, 1980; Petricek, Maly, 
Coppens, Bu, Cisarova & Frost-Jensen, 1991). As 
the temperature dependence of the reflection intensi- 
ties of composite structures remains unexplored, we 
have measured a number of reflections of the compo- 
site crystal Hgo.Tv6(BEDT-TTF)SCN [BEDT-TTF, 
abbreviated as ET, is 3,4;3',4'-bis(ethylenedithio)- 
2,2',5,5'-tetrathiafulvalene] (Wang, Beno, Carlson, 
Thorup, Murray, Porter, Williams, Maly, Bu, 
Petricek, Cisarova, Coppens, Jung, Whangbo, 
Schirber & Overmyer, 1991). One of the sublattices 
of this crystal is particularly simple, with only a 
single Hg atom in its unit cell. The other sublattice 
contains S C N -  ligands and partially oxidized ET 
molecules. Without the modulation, the intersublat- 
tice Hg-S distances show very large variations. The 
large modulational displacements of the mercury and 
S C N -  moieties are such that chemically reasonable 
intersublattice Hg-S bond lengths occur and the 
mercury valency remains quite constant along the 
incommensurate direction (Coppens, Cisarova, Bu & 
Sommer-Larsen, 1991). 

Table 1. List of  Miller indices of the reflections, 
calculated component structure factors (excluding the 
anomalous scattering contribution) and agreement fac- 
tors for the refinement of  the temperature dependence 

as described in the text 

Reflection ~'298 K p 2 9 S  K • Hs --~E'r~SCN sin O/a (A-i) wR(Y.2) 
2 0 l 0 45.4 70.8 0.183 0.07 
0 1 0 0 4.0 124.5 0.141 0.07 

- 2  1 2 0 22.0 -15 .0  0.159 0.08 
- 2  l 4 0 26.4 4.4 0.171 0.05 
- 3  l 3 0 26.8 - 9 . 5  0.224 0.06 
- 5  ! 4 0 24.7 19.1 0.337 0.07 
- 5  l 6 0 26.2 39.7 0.380 0.09 
- 4 - 1  6 0 - 8 . 9  -34 .2  0.430 0.08 

0 0 l l 50.1 - 2 . 4  0.110 0.05 
0 0 3 l 48.3 - 5 . 4  0.114 0.06 

- l 0 4 1 46.1 0.6 0.119 0.07 
0 0 2 l 49.6 - 2 . 8  0.124 0.07 

- 2  0 2 1 41.1 - 5 . 7  0.153 0.07 
- 2  0 4 1 38.2 -3 .1  0.157 0.07 
- 3  0 3 1 44.9 - 14.9 0.224 0.09 

0 0 l l  l 26.4 9.3 0.284 0.04 
2 0 5 l 34.3 -1 .1  0.287 0.05 
2 0 6 i 32.7 -2 .1  0.301 0.05 
3 0 3 l 28.1 - 0 . 2  0.345 0.10 
3 0 4 I 27.6 0.7 0.355 0.11 
3 0 5 l 26.8 0.5 0.367 0.11 

- 2  l 2 I 18.2 3.2 0.223 0.08 
- 2  I 4 l 21.6 6.6 0.229 0.07 
- 3 1 3 ! 22.6 1.0 0.257 0.05 

indices h ll 1 are first-order satellites of both lattices. 
Overall, 441 reflection intensities were measured, of 
which 260 were unique. The data were scaled for 
- 4 0 %  crystal decay during data collection by peri- 
odic (re-)collection of reflections at 150 and 300 K. 

Experimental 

Synthesis 

(ET)Hg0.776(SCN)z was prepared as described in 
the literature (Wang et al., 1991). 

X-ray analysis 

Intensity data were collected at between 30 and 
300 K on a Huber diffractometer equipped with a 
Displex cryostat and a high-stability mounting device 
(Henricksen, Larsen & Rasmussen, 1986; Graafsma, 
Sagerman & Coppens, 1991). 24 reflections were 
collected with Mo Ka radiation (A = 0.71069 A) in 
the range 0.11 < sin0/A < 0.43 ,~-1. They are listed 
in Table 1. One of the reflections, 2010, is a primary 
reflection of both lattices,* seven reflections with 
indices hllO are primary reflections of the (ET)SCN 
lattice and first-order satellites of the mercury lattice, 
13 reflections with indices hOll are primary reflec- 
tions of the mercury lattice and first-order satellites 
of the (ET)SCN lattice and three reflections with 

* The b-axis direction is common to both sublattices, hklO 
reflections are main reflections of the (ET)SCN lattice, hOlm 
reflections are the main reflections of the mercury lattice. 

The phason model 

The instantaneous position of an atom in a 
modulated crystal, uz, can be expressed as xz = ! + 
(ut) + ~uz, where ! describes its position in the 
absence of the modulation and ! + (uz) is the mean or 
time-averaged position of the atom in the presence of 
the displacive modulation. The displacement ut 
depends on the amplitude A and the phase 01 of one 
or more modulation waves. For a single sinusoidal 
modulation wave, 

ul = A cos 0r, (1) 

with 01 = q" ! - 00, where q is the wave vector of the 
modulation and 0o is the value of the phase in the 
absence of phason excitations. 

When the phasons are excited and phase fluc- 
tuations occur, the time-averaged displacement is 
given by (Axe, 1980) 

(u,) = n cos 0,, (2) 

where ~1, the time-averaged amplitude vector of the 
modulation, is related to the static amplitude vector 
A by 

n = A(cos t~p). (3) 
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8~o is the instantaneous fluctuation of the phase of 
the displacement wave. ~q generally has a smaller 
magnitude than A, as illustrated in Fig. 1. 

In the absence of amplitude modulations, the 
instantaneous change in the displacement of the 
atom can be written ast  

6ul = A[(cos q~t - (cos 6q~)) cos 01 + sin ~Pl sin 0t]. (4) 

With the inclusion of the effect of the phase 
fluctuations and the omission, for the moment, of the 
Debye-Waller temperature factor, the contribution 
of atom u to the time-averaged structure factor is 
given by 

F,,(H) =f,,(H) exp [ni(,n" - 00,,,)] exp (27rtqI-I • r °) 

x J ,(2rrH • A~)(exp (inS~ot)), (5) 

with H = h a * + k b * + l e * + n q .  To simplify the 
expressions, we discuss the case of a single atom with 
unit scattering power, located at the origin of the 
unit cell. For this case, (5) becomes 

F(H) = exp [ni(Tr - 0o)]J,(ZTrH" A)(exp (/nSq~l)). (6) 

If the phase fluctuations tSq~ have a Gaussian 
distribution, the last term in (6) can be written as 

(exp (imS~Ol)) = 1 - (n2/Z)(tS~p 2) + (n4/Z4)(tSq~4), (7a) 

which, for small values of the phase fluctuations, can 
be approximated by 

(exp (/n6~ot)) = exp [-(n2/Z)(8~p2)], (7b) 

t We have omitted the effect of amplitudons, which are especi- 
ally important in the vicinity of phase transitions representing the 
onset of a change in the modulation pattern. No such transitions 
occur in the composite crystals studied here. 

Static displacement 

....... Instantaneous displacement 

~ 0  

c5 

• Mean position 

Q) Instantaneous position 
[ ]  Static position 

Direction along q 

Fig. 1. Illustration of the apparent decrease of the modulation 
amplitude owing to the phase fluctuations of the modulation 
wave. 

which gives 

F(H) = exp [ni(zr - 00)]J,(ZzrH • A) 

x exp [ - (n2/2)(6~02)]. ( 8 )  

While (8) has been used in the present analysis of 
the temperature dependence of the reflection intensi- 
ties, it is useful to express the structure factor in 
terms of the mean amplitude r/, which defines the 
mean positions of the atoms in the crystal. For small 
values of r/, 

F(H) = exp [ni(rc - 00)]J,(2rrH "~1) 

x [J,(ZrrH" A)/J,(2zrH • ~1)] 

x exp [ -  (nZ/Z)(tSq~2)]. (9) 

As the nth-order Bessel function is given by the 
expansion 

J, , (x)  = [x" /Z"F(n  + 1)]{ 1 - [x2/2(2n  + 2)] 

+ [x4/2 x 4(2n + 2)(2n + 4)] - . . . } ,  (10) 

where F ( n  + 1) is the gamma function equal to n! for 
positive integer n, for small x and y: 

Jn (x ) / Jn (y )  " - - "  ( x / y )  Inl e x p  [ (y2 _ xZ)/Z(Z[n[ + 2)]. (11) 

This expression is equally valid for negative values of 
n, as J_ , (x)  = ( -  1)"J,(x). Thus, 

J,(2zrH" A)/J,(2zrH "11) 

= (H" A/H" ~q)l-I 

× exp {[(27rH " n )  2 - (2~rH • A)2]/2(Z]n] + 2)} 

= (A/r/) I"1 exp {(2~rH" ~)2/2(21nl + 2)[1 - (A/r/)2]} 

= exp [(Inl/Z)(a o2)] 
× exp {[ - (27rH-  ~1)2/2(21nl + 2)](8q~2)}, (12) 

where we have made use of the collinearity of ~q and 
A and the expressions 

A / r l  = 1/(cos 8~p)= 1/(1 - (t5~o2)/2)= 1 + ((6q~2)/2) 

and 

exp ((8q~2)/2) - 1 + ((,~2)/2). 

With this substitution, the expression for the struc- 
ture factor becomes 

F(H) = exp [ni(rr - 0o)]J,(ZrrH "~) exp ( -  {(n2/2) 

- (Inl/2) + [1/(In I + 1)](2rrn" ~1/2)2}(6~02)). 

(13) 

Expression (13) reverts to the equation given by 
Axe (1980) if the (27rH" ~1/2) 2 term is small and can 
be neglected. As it includes a higher-order term, its 
range of validity will be larger than that of the 
expression given by Axe. 
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Determination of Debye-Wager and phason tempera- 
ture factors by temperature-dependent experiments 

For a crystal composed of two incommensurate com- 
posite lattices a and b, the structure factor can be 
expressed as 

F = Fa + Fb. (14) 

If phasons are excited, they will contribute to the 
temperature dependence of the component structure 
factors, F, and Fb. 

The mean amplitude ~1 is expected to vary through 
its phason dependence. We make the assumptions 
that the static amplitude A is independent of tem- 
perature and that the temperature dependence of 
each lattice is characterized by a single phason and a 
single isotropic Debye-Waller factor. 

We may then write 

F(T)=  F~ ° exp (dba) + Fb ° exp(dbb),  (15) 

where F,. ° = F~(To) and 

Ab,(T) =. bi(T) - bi(To). (16) 

with the effect of phasons included according to (8), 

b;(T) --- - ( s in  2 O/A2)Bi(T) - (n2/2)(6q~(T)). (17) 

For temperatures larger than the Debye temperature, 
A B =  B ( T ) - B ( T o )  is proportional to AT. As the 
phasons are low-frequency modes, we can assume 
that phase fluctuations have a similar linear depen- 
dence, thus 

Abi(T) = (sin 20/A2)c~iAT - (nZ/2)cPdT, (18) 

where the ci's are the proportionality constants 
defined as AB/AT.  In the absence of static disorder 
and neglecting zero-point vibrations, ~ = B~(T)/T 
and c~ = (~o~(T))/T.  

We may eliminate the scale factor s defined by 

lo(H) = slF# (19) 

by dividing the intensity at temperature T by the 
intensity at a reference temperature T~: Yo(T)= 
Io(Z)/Io(Tr). 

e o c~'and c~ 9 can then be The four parameters c~, ca, 
obtained by minimizing Zw(Yo  - y~)2, where 

w = I2(T~)/{o'Z[Io(T)] + [Yo(T)]ZtrZ[Io(T~) ] + xYZo} 

(20) 
and 

Y~(T) = {[F~ ° exp [Abo(T)] + Fb ° exp [Abb(T)]] 2} 

x {IFa ° exp [db~(T~)] + Fb ° exp [dbb(Tr)][2}. 

(21) 

The additional term x Yo 2 in the denominator of (20) 
allows for errors in the data set that are proportional 
to the measured signal Yo(T), in analogy to the 
procedure commonly used in structure refinement. 

Application to Hgo.776(ET)SCN 

For Hg(ET)SCN, the two sublattices a and b corre- 
spond to a simple one-atom Bravais lattice contain- 
ing mercury and a lattice containing the remaining 
atoms. 

Fig. 2 shows the temperature dependence of the 
magnitudes of the modulation vectors, ]qHg] and 
]q(ET)SCN[. The two sublattices and therefore the two 
modulation vectors are related by an interlattice 
matrix as discussed by Petricek et al. (1991). Fig. 3 
shows the temperature dependence of the sublattice 
volumes. While the mercury and (ET)SCN lattices 
each decrease in volume, their ratio remains con- 
stant. Since the crystal stoichiometry is determined 
by this ratio, this must be the case unless vacancies 
occur in one of the component lattices. 

The structure factors FoO= ~298K and Fb ° =  • Hg 
F(298 K ET)SCN needed for the evaluation of (21) were 
taken from the known structure (Wang et al., 1991) 
and are listed in Table 1. The calculated values of Yc 
were fit to the multiple temperature reflection data 
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Fig. 2. Temperature dependence of the magnitude of the modula- 
tion vectors of the two sublattices: (a) mercury lattice; (b) 
(ET)SCN lattice. 
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by a linearized least-squares procedure, with the 
Debye-Waller and phason parameters of each sub- 
structure according to (18) as variables. 

In the refinement, mean modulation amplitudes 
from the room-temperature study are used as an 
approximation to the static amplitudes A. For the 
mercury lattice, the amplitude of the large first-order 
harmonic terms was used. The Cartesian components 
are Ax = 0.24, Ay = 0.01 and Az = 0.27 A. For the 
(ET)SCN lattice, the translational displacive com- 
ponents were used, which are Ax = 0.02, Ay = 0.01 
and Az = 0.10 A. 

The four temperature parameters were refined with 
different values of the proportionality factor x in 
(20) against a total of 236 observations [24 data were 
used for Io(T~)]. The agreement factors for each of 
the 24 reflections are listed in the last column of 
Table 1. The refined values of the variables and 
overall agreement factors are listed in Table 2. Figs. 
4(a)-(d) show the results for 2010, a primary Hg-  
primary (ET)SCN reflection; for 3031, a primary 
Hg-first-order (ET)SCN reflection; for 2120, a first- 
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F i g .  3.  T e m p e r a t u r e  d e p e n d e n c e  o f  t h e  s u b l a t t i c e  v o l u m e s :  ( a )  

m e r c u r y  ce l l ;  ( b )  ( E T ) S C N  ce l l .  

Table 2. Parameter values and overall agreement fac- 
tors for the refinement of the temperature dependence 

of the reflection intensities 

N u m b e r  o f  o b s e r v a t i o n s  236  
N u m b e r  o f  v a r i a b l e s  4 
c o  = A B H j A T  (/~2 K -  ')  0 .0083  (11) 

o - ABcwr)scN/AT  (A 2 K -  ' )  c < ~ s c N  - 0 .0072  (17)  
c~s = A(8~o2)H~/AT ( r a d  2 K - ' )  0 .0026  (2) 
C(ET)SCNI' = A(6~02)CET~SCN/AT ( r ad  2 K - ' )  0 .0000  (8) 

1.9 x 10 -~ X 

w R (  Y) -- [Zw( Yo - Y~) 2 / y w  Yo2] "2 0.14  
w R (  y . 2 )  - [Ew ' (  Yo ''2 - Yc"2)2/Ew" Yo] ''2 0.069 
w i t h  w' = 4 Y o w  

order Hg-primary (ET)SCN reflection; and for 3131, 
a first-order Hg-first-order (ET)SCN reflection. As 
shown in Fig. 4(c) for the 2120 reflection, a 
refinement based on a two-parameter Debye-Waller 
model excluding the phason contribution is com- 
pletely unsatisfactory. 

The mercury parameters C~g and C~g result- 
ing from the fit are insensitive to x, varying by much 
less than their e.s.d.'s for large variations in x. 
The (ET)SCN parameters are, on the other hand, 
quite sensitive. For example, with x = 0.0 the four 
temperature parameters refine to C~g = 
0.0083 (14) A 2 K-1,  c n 
C~ig = 0.0027 (3) rad 2 K!E'r)scN =and0"0142 (15)c p(E-r)scN/k2 K-__I, 

- 0.0026 (l l) rad 2 K - l  with wR(Y)=O.15. The 
apparent large negative correlation between the two 
(ET)SCN temperature parameters appears unjusti- 
fied by the small correlation coefficient of - 0 . 2 6  
(x = 1.9 x 10 -5) between these parameters. The sen- 
sitivity of the (ET)SCN parameters to the refinement 
conditions precludes the attachment of much physi- 
cal significance to their refined values. 

D i s c u s s i o n  

The results show that the data can be fitted reason- 
ably well by the model in which the temperature 
dependence is described by one Debye-Waller and 
one phason temperature parameter for each of the 
sublattices of the composite structure and in which 
all four temperature parameters are proportional to 
the absolute temperature. Only the phason tempera- 
ture parameter for the mercury sublattice is signifi- 
cantly different from zero. 

Further support for the temperature independence 
of A in the mercury sublattice is provided by com- 
paring the derived Debye-Waller coefficient, CZ~g, to 
the Debye-Waller factor determined in the room- 
temperature structure analysis. If the structure is 
assumed to be statically ordered and zero-point 
motion is neglected, then Cng ---- 0.0083 (11) A 2 K -  I 
corresponds to a room-temperature isotropic tem- 
perature factor of BHg = C£Hg X 300 K = 2.5 (3) A 2. 
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Fig. 4. Temperature dependence of the intensities of four reflec- 
tions and the least-squares fit to the model including phason 
temperature factors. (a) 2010. (b) 3031. (c) 2120. (d) 3131. The 
last of  these is a pure satellite reflection, the first a pure main 
reflection; the other two are mixed main-satellite reflections. 
Note that the indicated fit is based on a global four-parameter 
model and does not represent a fit to the individual reflection 
data points. The broken line in Fig. 4(c) is the fit obtained with 
a two-parameter Debye-Waller-coefficient-only model. 

The corresponding value from the structure deter- 
mination is Brig = 2.3 (1)A 2. Because of the single- 
atom nature of the mercury sublattice and the 
expected small zero-point motion of the mercury 
atoms [Oo(Hg metal) = 100 K] (Ashcroft & Mermin, 
1976), the agreement with the room-temperature BHg 
value supports the validity of the constant static- 
amplitude approximation. A decrease in the static 
distortion with increasing temperature (i .e.  
expanding lattices) would increase the primary 
reflection intensities and consequently would result 
in artificially low B values. 

The non-negligible value of C~ig implies significant 
phason excitation of the mercury sublattice at room 
temperature. The value of C~g = 0.0026 (2) rad 2 K-1 
corresponds to a room-temperature r.m.s, phason 
fluctuation of ~o~'° 2,1/2)Hg = (CPg X 300)  1/2 = 50 (2) °. No 
comparable values are available in the literature, but 
Axe (1980) lists a range of 'plausible values' of 
(8~o2) 1/2 of 4 < (8~o2) I/2 < 57 ° for materials not sub- 
ject to normal ~ incommensurate phase transfor- 
mations. We note that the approximation made in 
(7b) is justified by this value of the phase fluc- 
tuations. 

The observed temperature dependence of the 
phason fluctuations implies that the m e a n  amplitude 
of displacement of the mercury atoms, ~lHg, will 
increase with decreasing temperature. The derived 
r.m.s, mercury fluctuation of 50 ° gives (17/A)Hg ~" 
1 - (((~p2)Hg/2) --~ 0 .6 ,  i .e. the mean amplitude of dis- 
placement of the Hg atoms is predicted to increase 
by about 60% on lowering of the temperature to 
near 0 K. 

We conclude that the current study of the 
temperature dependence of the reflection intensities 
supports the existence of phason excitations in 
the mercury sublattice of the composite crystal of 
ngo.776 (BEDT-TTF)SCN. 
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Abstract 
Several methods for the automatic determination of 
heavy-atom structures have been developed and 
extensively tested. The methods are based on a com- 
bination of vector superposition in space group P1 
with a symmetry minimum function. The peaks of 
the symmetry minimum function are used as trial 
origin shifts in the translational search for the cell 
origin. Three or two Patterson shift vectors, all 
belonging to a single image, can be obtained for 
vector superposition by a procedure called cross- 
vector superposition. The superposition map may be 
refined by an automatic Fourier recycling in space 
group P1 before the translational search is started. 

Introduction 
Ab initio Patterson deconvolution techniques can be 
divided into two main groups depending on the 
utilization of symmetry: 

(i) The symmetry is used from the very beginning 
and some atomic positions are suggested from the 
analysis of Harker regions (Harker, 1936) or more 
automatically using the multiple implication function 
(Simpson, Dobrott & Lipscomb, 1965). For more 
sophisticated techniques also using symmetry-related 
cross vectors, see Borisov (1964), Kuz'min, Golova- 
chev & Belov (1970), Luger & Fuchs (1986), Pavelrik 
(1988) and Pavelrik, Kuchta & Siv2~ (1992). 

(ii) The Patterson function is deconvoluted by a 
(weighted) vector minimum superposition (Buerger, 
1959; Jacobson & Guggenberger, 1966) in space 
group P1 based on a carefully selected single Pat- 
terson vector or on several vectors all belonging to 
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the same image. The symmetry is introduced after 
the structure has essentially been solved. Automatic 
structure determination based on vector minimum 
superposition in space group PI has been reviewed 
by Simonov (1982). The general approach consists of 
several steps: 

(1) Calculation of a (sharpened) Patterson 
function. 

(2) Search for an atomic fragment using Patterson 
peaks or selection of a suitable Patterson peak for 
the superposition. 

(3) Minimum-vector superposition. 
(4) Inverse Fourier transform of modified mini- 

mum superposition map. 
(5) Fourier recycling in space group P1. 
(6) Search for a standard cell origin consistent 

with the space-group symmetry by some sort of 
translation function. 

(7) Shift of the origin and electron-density averag- 
ing based on the symmetry. 

(8) Fourier recycling using only peaks of the 
asymmetric part of the unit cell. 

Even simplified algorithms based only on steps (1), 
(3) and (6) and the single vector superposition 
proved to be very successful in solving heavy-atom 
structures because of more sophisticated translation 
searching for multiple images (Richardson & Jacob- 
son, 1987) or because of combination with the cross- 
vector table (Sheldrick, 1991; Sheldrick, Dauter, 
Wilson, Hope & Sieker, 1993). 

The major sources of difficulty in the Simonov 
scheme are steps (2) and (6). The problem of selec- 
tion of Patterson peaks may be overcome by a 
special superposition suggested by Iljukhin, Kuz'min 
& Belov (1981), which is called cross-vector super- 
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